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DOES PATENT STRATEGY SHAPE THE LONG-RUN SUPPLY OF 

PUBLIC KNOWLEDGE? EVIDENCE FROM HUMAN GENETICS 

 

 

 

 

ABSTRACT 

Knowledge-based firms seeking competitive advantage often draw on the public knowledge 

stream – ideas embedded in public commons institutions – as the foundation for private 

knowledge – ideas firms protect through private intellectual property (IP) institutions.  What are 

the implications of such strategies for long-run public knowledge production? We examine this 

question in human genetics, where policymakers debate this issue following dramatic expansion 

of IP ownership over the human genome.  We show that gene patent grant decreases the long-run 

production of public genetic knowledge, with broader patent scope, private-sector ownership, 

complexity of the patent landscape, and the gene’s commercial relevance exacerbating the effect. 
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INTRODUCTION 

How do firms’ patent strategies, and the landscape of private property rights they collectively 

produce, influence the long-run production of public knowledge?  Management scholars have 

paid close attention to the ways in which firms benefit from public knowledge – ideas disclosed 

through open commons institutions – by using it to generate private knowledge, protected by 

private property institutions such as patents (Cockburn & Henderson, 1998; Cohen & Levinthal, 

1990; Fleming & Sorenson, 2004; Powell, Koput, & Smith-Doerr, 1996).  However, they have 

paid scant attention to the converse relationship: the impact of private knowledge on public 

knowledge production.  Instead, legal and policy analyses dominate the study of this relationship 

(Heller, 2008; Heller & Eisenberg, 1998; Lessig, 2004). This speaks to the importance of a 

management perspective bridging the policy and legal studies with organizational theory and 

strategy, which can initiate a rich agenda examining the interaction between firm strategy and the 

institutional foundations of knowledge work.  

The debate over public and private contributions to genetic knowledge – fueled by the rapid 

sequencing of the human genome, the burgeoning stream of public genetic knowledge published 

in scientific articles and the expansion of gene patenting by industry – exemplifies broader 

arguments over whether patenting helps or hinders public knowledge.  With patents protecting 

everything from full genes to small lengths of DNA (Andrews, 1991; Henry, Cho, Weaver, & 

Merz, 2002; Holman & Munzer, 2000), critics have argued that they increased gene test prices, 

initiated costly patent wars among firms and universities, and stifled public knowledge 

production in academia (Crichton, 2006; Eisenberg, 1996; Greenfield, 2006; Merz, 1999; Nash, 

2000).  Countering these claims, other scholars have noted that these patents provided important 

incentives for continued investment in useful genetic knowledge and related drugs and 
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diagnostics.  An alternative perspective argues that private intellectual property (IP) rights on 

genes have no bearing on public knowledge in genetics (Walsh, Cho, & Cohen, 2005).   

In seeking clear answers to the question of how gene patenting influences the long-run 

supply of public knowledge, scholars have relied on evidence from individual cases that 

highlight the aggressive enforcement of gene patent rights over academic scientists (Henry et al., 

2002).  While richly describing the challenges of gene patents, these studies cannot illuminate 

the extent of these issues across a wide variety of patents and genes.  Several inherent challenges 

account for why this topic has not been the subject of large-scale empirical studies.  First, until 

the recent documentation of the patent landscape of the human genome (Jensen & Murray, 

2005), systematic data on the private knowledge stream was limited.  Second, even with such 

data, traditional approaches cannot estimate the causal impact of patenting on the public 

knowledge stream.  The challenge lies in the important variations that may characterize 

knowledge associated with patented and unpatented genes, making simple comparisons 

uninformative.  A third issue further confounds the problem: confusion as to whether the public 

and private knowledge streams should be defined by different types of knowledge (basic v. 

applied), the organization of knowledge production (academia v. industry), or the institutional 

sphere defining knowledge disclosure, access and accumulation (public commons v. private 

property).  Finally, management theory has no synthetic framework in which to analyze disparate 

evidence on the relationship between the public and private knowledge streams.   

This paper aims to address these issues.  It uses a framework that highlights institutional 

differences between research knowledge embedded in the public commons and in private 

property (Dasgupta & David, 1994; Weitzman, 1974), and explores the interrelationships 

between these spheres (Colyvas & Powell, 2006; Murray & O’Mahony, 2007).  We recognize 
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that, in many instances, the same “pieces” of knowledge may contribute to both the public and 

private knowledge streams and be disclosed in both publications and patents – a feature of 

knowledge disclosure that are referred to as patent-paper pairs (Ducor, 2000; Murray, 2002).  

More than simply an artifact of knowledge disclosure, these pairs instantiate the dynamic process 

through which public domain knowledge is subject to informal norms for about three to four 

years (on average), after which patents are granted and the knowledge becomes subject to formal 

legal private property rights.  Consequently, while knowledge in the public and private streams 

can converge through patent-paper pairs, the normative requirements of the public and private 

institutions may diverge and, at times, conflict.    

Patent-paper pairs provide us with a window into this conflict and the implications of making 

joint contributions to the public and private knowledge stream.  They also make it possible to 

compare the pre- and post-patent periods closely and observe the ways in which the institutional 

foundations of the private knowledge stream shape the long-run public knowledge stream 

(Murray, 2008).  To estimate the effects of these institutional interactions, we extend novel 

econometric methods into the management domain. Using the differences-in-differences 

approach from economic policy and organization analyses (Furman & Stern, 2006; Rysman & 

Simcoe, 2008), we assess the impact of patent grant on the rate of production of follow-on public 

knowledge. We have developed the first systematic, large-scale quantitative evidence of such 

impact in the field of human genetics by examining the rate of follow-on papers citing the core 

gene paper before and after patent grant (Murray & Stern, 2007a).      

 The starting point for our analysis is the population of 4,270 human gene patents (covering 

almost 20% of 23,688 known human genes) (Jensen & Murray, 2005), from which we identify 

1,279 human gene patent-paper pairs.  These pairs are distinguished by the shared disclosure of a 
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gene sequence in the “gene paper” and in the claims of the “gene patent”.  The gene sequences 

are then traced to all other patents issued on the gene, from which we build the patent landscape 

by devising novel measures of patent ownership fragmentation (Ziedonis, 2004) and overlapping 

patents associated with the same set of (genetic) knowledge (Shapiro, 2001).  We then 

investigate how individual patents and the patent landscape together contour future public 

knowledge production.   

The analysis in this paper responds to Hitt’s call (2005) to apply management theory and 

tools to enrich public policy.  By doing so, we provide policymakers and executives with 

evidence to guide their decisions over gene patents and the patent system more broadly.  These 

issues have the potential to shape the institutional foundations of U.S. innovation for years to 

come.  A change in the scope of gene patents or an outright ban – as proposed in a 2007 

Congressional Bill (H.R. 977, 110th Cong) – could transform the private knowledge stream (and 

alter opportunities for competitive advantage) and indirectly shape the long-run public 

knowledge stream for firms in sectors as diverse as human health, agriculture and the 

environment. Beyond human genetics and the life sciences, our findings could help guide the 

study of patenting in other knowledge-intensive industries, especially on how patent strategies, 

and the patent landscape produced as the collective outcome of firm patenting, affect follow-on 

knowledge in the public and private spheres. 

The conceptual framework at the heart of our analysis also has implications for management 

scholarship, where scholars currently explore the one-way relationship between public 

knowledge and its incorporation into the private knowledge stream.  A comprehensive 

perspective that captures the dynamics of relationships in both directions may reveal subtle 

positive and negative impacts that would otherwise elude researchers.  This approach is 
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particularly salient as firms seek to engage strategically with knowledge communities whose 

production of a variety of public goods – from scientific knowledge to software, designs and 

music – increasingly rely on voluntary contributions to the public domain (von Hippel & von 

Krogh, 2006).  Finally, our analysis is intended to initiate further research at the intersection of 

three literatures: institutional theory, with its insights into the formal and informal norms of 

knowledge work (Colyvas & Powell, 2006; Dasgupta & David, 1994; Fauchart & von Hippel, 

2008); intellectual property strategy (Gans & Stern, 2000; Teece, 1986; Ziedonis, 2004), which 

focuses on how firms use intellectual property to shape strategic outcomes; and lastly, 

organization theory, where the emergence of organizations facilitating knowledge work takes 

center stage (Brown & Duguid, 2001; Hargadon & Bechky, 2006; O’Mahony & Bechky, 2008).  

 
THEORY AND HYPOTHESES 

 
Institutional Foundations of Private and Public Knowledge Streams 

Scholars have long examined the complex dynamics of knowledge production and 

accumulation across firms, communities, and regions (Almeida, Dokko, & Rosenkopf, 2003; 

Hansen, 1999; Kogut & Almeida, 1999; Kogut & Zander, 1992). A central feature of these 

analyses is the recognition that streams of knowledge are embedded in distinctive 

institutionalized spheres – public and private – that shape the rules of knowledge disclosure, 

access and reward (Dasgupta & David, 1994; Murray & O’Mahony, 2007; Weitzman, 1974).  It 

is widely assumed that we can map the institutional choice for any piece of knowledge from the 

type of knowledge and the organization of its production. In the canonical formulation, basic 

knowledge is generated in academia and then embedded in public commons institutions. 

Conversely, applied knowledge is generated in industry and embedded in private property 
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institutions.  While mounting evidence suggests that this simple mapping is no longer valid 

(Gans, Murray & Stern, 2008), distinctions between the two institutional spheres remain salient.  

Public knowledge, embedded as it is in the public institutional system, is disclosed into the 

public commons and there exist few limitations to its follow-on use by others.  The limited 

institutional norms shaping access are informal and governed by “Republic of Science” (as 

articulated by Merton (1973) with caveats acknowledging substantial local variations (Knorr-

Cetina, 1999; Latour & Woolgar, 1979) or other informal norms (Fauchart & von Hippel, 2008).  

Access (in the case of scientific knowledge) requires acknowledgement through citations, 

rewarded via later recognition (de Solla Price, 1965; Hagstrom, 1965).  As each piece of 

knowledge disclosed through a publication contributes to a public knowledge stream – the flow 

of public knowledge –it provides the foundation for the future knowledge with the inter-temporal 

contributions to the public knowledge streams linked through citations (Garfield, 1955).   

In contrast, the private knowledge stream is produced when knowledge is disclosed in patents 

and embedded in an intellectual property sphere.  In return for disclosure, patent owners receive 

a time-limited monopoly over their knowledge, which enables researchers to prevent others from 

using their knowledge or to insist that follow-on innovators secure a license and make a variety 

of payments, including royalty payments or fees.  In parallel with the normative citation 

requirements linking papers in the public knowledge stream, patent law incorporates an 

enforceable obligation to cite prior patents when an innovator builds on prior works.  Therefore, 

in empirical terms, the citation link from one patent to another provides the (albeit limited) trace 

of the private knowledge stream, linking one generation of knowledge production to the next 

(Trajtenberg, Henderson, & Jaffe, 1997).  
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Interrelationships between Public and Private Knowledge Streams 

Understanding the interrelationships between the public and private knowledge streams – and 

their corresponding institutional spheres – can provide important insights into the flow of 

knowledge throughout the economy, and more specifically, the ways in which firms can manage 

and capitalize on these streams.  To date, however, scholars have not integrated these complex 

relationships into a complete theoretical framework.  This synthesis has been elusive, in part, 

because the type of knowledge (basic v. applied), the locus of its production (academia v. 

industry) and the institutional sphere where it is embedded (public v. private) have been 

confounded or have only been considered in fragmentary ways in disparate literatures.  For 

example, the analysis of firm-level patenting and publishing also does not address whether these 

two forms of disclosure capture the same or different types of knowledge (Gittelman & Kogut, 

2002; Lim, 2000).  Our goal then, is to synthesize these disparate literatures as a step toward a 

deeper understanding of the interrelationship between public and private knowledge streams.  

Public Knowledge Stream Influences on the Private Knowledge Stream. Traditional 

perspectives on competitiveness and long-term economic growth underscore the central role 

played by the public knowledge stream as the foundation of the private (patented) knowledge 

stream (Romer, 1994).  At the highest level of abstraction, this relationship is described in terms 

of the linear model of science: advancements in the public knowledge stream are equated with 

progress in basic science, which in turn establishes critical inputs for the downstream private 

(patented) stream of applied research, technological innovation and commercialization 

(Rosenberg, 1974).  Vannevar Bush famously articulated this view in his call for heightened 

funding of the “endless frontier” of public scientific knowledge (Bush, 1945).  



10 

 

Management theorists often echo this view when they examine specific mechanisms firms 

use to access and leverage public knowledge streams.  The notion of absorptive capacity (Cohen 

& Levinthal, 1990) captures the possibility that firms can, and should, absorb knowledge 

available in the public commons as part of their attempts to make effective contributions to the 

private knowledge stream.  Moreover, it is argued that firms establishing strong capabilities in 

absorbing the public knowledge stream will be more effective innovators and therefore more 

competitive (e.g. Powell et al., 1996; Zucker, Darby, & Brewer, 1998).  Within this line of 

enquiry, however, scholars disagree not only on how to measure this linkage,1 but also on the 

ways in which firms engage with the public knowledge stream, in all its institutional complexity, 

and the impact those interactions have on how firms contribute to the private knowledge stream.   

Some argue that these public-private linkages are a rich source for new scientific techniques 

(Klevorick, Levin, Nelson, & Winter, 1995) contributing to applied knowledge.  On the other 

hand, engagement with the public knowledge stream may provide stronger intellectual 

foundations for private knowledge production (Nomaler & Verspagen, 2007).  Specifically, 

Fleming and Sorenson (2004) argue that firms use public knowledge streams as a “map” to help 

navigate and contribute to the complex landscape of patentable innovations.  

A third interpretation suggests that engagement with the public knowledge stream provides 

industrial scientists with non-monetary rewards, access to conferences and academic scholars 

(Stern, 2004).  Moreover, by pursuing a strategy that rewards contributions to knowledge 

embedded in and endorsed by the public institutional sphere, firms might be able to attract and 

retain higher quality researchers (Henderson & Cockburn, 1994; Cockburn & Henderson, 1998).   

                                                 
1 At least three measures are used to capture the relationship between public and private knowledge streams: The 
number of publications cited in patents, or “science linkage” (Narin, Hamilton, & Olivastro, 1997; Tijssen, 2002), 
the patent and publication portfolio of firms (Gittelman & Kogut, 2003; Lim, 2000), and co-authorship and co-
patenting networks (Owen-Smith & Powell, 2003; Powell et al., 1996; Zucker et al., 1998). 
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Private Knowledge Stream Influences on the Public Knowledge Stream.  Management 

scholars have devoted less attention to the ways in which decisions to participate in the private 

knowledge stream may influence contributions to the public knowledge stream.  Studies of 

industry’s influence over the direction of public knowledge production hint at a linkage from 

private to public knowledge, forming a feedback loop that reverses the traditional linear model of 

science (Meyer, 2000; Rosenberg, 1974).  However, this formulation focuses on the content of 

the public and private knowledge streams and not on whether the private influence on the public 

knowledge is grounded in corporate decisions over IP rights.   

Do such institutional decisions positively or negatively influence future contributions to the 

public knowledge stream? The literature posits a number of possible mechanisms of influence.  

At the broadest level, some question the morality of knowledge production undertaken (by 

academics) in the shadow of private (intellectual property) interests.  They argue that private 

property rights and their related financial interests undermine academic objectivity, causing bias, 

suppression of results, and even fraud (Krimsky, 2003; Resnik, 1998a, 1998b). More concretely, 

they claim that contributing to the private knowledge stream, in the form of patents, will 

encourage secrecy (in the form of timing decisions, withholding of information, materials etc.) 

and lower contributions to the public knowledge stream (Blumenthal, 1997; Campbell et al., 

2002).   

Other scholars have focused on how the rewards of patenting distort researchers’ research 

agendas (Thursby & Thursby, 2002).  In this view, researchers will shift towards more applied 

research in order to contribute more effectively to the private knowledge stream (Aghion, 

Dewatripont & Stein, 2005).  This parallels the countervailing concern that firms contributing to 

the public knowledge stream weaken their ability to generate private knowledge (Gittelman & 
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Kogut, 2003).  Many of these worries about public-private influence are premised on the idea 

that research projects conducted in public and private organizations differ.  However, evidence 

suggests that this assumption is false: scientists engaged in a range of endeavors can contribute 

knowledge to either or both knowledge streams – from early semi-conductors to recombinant 

DNA and software code (Murray, 2002, 2008).  In other words, the content of the two 

knowledge streams can converge even while their institutional spheres remain distinctive. 

 
Convergence of the Private and Public Knowledge Streams 

Researchers in universities and firms confront the possibility that their research results can 

contribute to either the public or the private knowledge streams.  Specifically, they can choose to 

embed their knowledge in both institutional spheres in the form of a patent, a publication or both 

– a patent-paper pair.  These pairs are distinctive instantiations of the same pieces of knowledge 

whereby the knowledge disclosed in the paper is also the subject of patent claims (Ducor, 2000; 

Murray, 2002).  Far from being an unusual or strikingly modern occurrence, researchers from 

Pasteur to Shockley and later Cohen and Boyer have disclosed their knowledge in patent-paper 

pairs, thus contributing to the convergence of the public and private knowledge streams.  For 

example, while doing research at Bell Labs, William Shockley created the foundations for early 

semiconductors with his development of the transistor.  The experiments he undertook in January 

1948 are described in his Bell Labs lab notebook (No. 20455 pp: 128-32 (January 1948).  Less 

than six months later, in June 1948, he filed for a US patent on the solid-state transistor (U. S. 

Patent 2,569,347 issued September 25, 1951). In 1949, he published the theory underlying the 

transistor inventor (Shockley, 1949). Pairs are also prevalent for knowledge in human genetics 

(Huang, 2006; Huang & Murray, 2008), a finding that lies at the heart of our analysis.    



13 

 

More than simply a curious object and useful methodological device, contributions to the 

public and private knowledge streams in the form of patent-paper pairs initiate complex 

dynamics and potential collisions between the distinctive normative requirements of the public 

and private institutional spheres (Murray, 2008). After generating new knowledge, researchers 

can choose to document their findings in the public domain, either directly or more commonly 

via traditional peer-reviewed journals.  In many scientific fields, manuscripts move through 

review to publication in three to six months, thus rapidly joining the public knowledge stream.  

With publication, researchers are now subject to the informal norms of public science; material 

sharing, data exchange, assistance with tacit knowledge etc. (Kohler, 1994).  While fields vary in 

the specifics, in most instances, exchange of information, materials, methods, and other 

knowledge required to replicate or accumulate is accompanied by an obligation to acknowledge, 

cite or possibly to collaborate.  Beyond these expectations, there are few strictures on follow-on 

researchers as they draw from and build on the public knowledge stream.   

These limited obligations remain salient even if researchers also submit their manuscripts to 

patent lawyers (directly or via a technology transfer office (TTO)) in order to file patents.  They 

face one key constraint: the patent must be filed within a year of the paired publication (or 

disclosure of the paired knowledge at a conference) in order to retain U.S. patent rights (foreign 

private property rights are lost if the patent application is filed after publication).  Once 

researchers have met this constraint, the public and private regimes do not intersect again until 

the patent is granted – typically three to four years after the paired publication.  In this period, the 

norms of the public commons apply to researchers.  However, in the post-patent grant period, 

researchers and their firms have formal legal IP rights over the knowledge disclosed in the patent 

and in the paired publication.  Thus, while still bound by the norms of the public commons, legal 
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IP rights can be invoked.  In particular, researchers may provide, restrict or prohibit access to 

those seeking to draw from and build upon their contribution to the private knowledge stream for 

follow-on knowledge production.2  The timeline described above for the patent-paper pair is 

illustrated in Figure 1. 

------------------------------- 
Insert Figure 1 about here 
------------------------------- 

 

Even academic researchers who do not read the patent (Walsh et al., 2005), but who use the 

knowledge in the paper, now fall within the scope of possible IP enforcement as clarified in the 

Madey v. Duke University decision (Dreyfus, 2004).  Not limited to industry-owned patents, the 

University of Wisconsin has also imposed its rights to human embryonic stem cells over 

researchers in academia and industry through complex licensing agreements (Murray, 2007). 

Consequently, while the actual knowledge in the public and private streams converges through 

patent-paper pairs, the normative requirements of the two streams do diverge and may conflict.      

What is the actual impact of placing knowledge in both the public and the private knowledge 

streams?  How do these conflicting regimes intersect, and how are the tensions resolved? 

Addressing these questions requires a more systematic analysis of the ways in which patent 

strategies of firms affect the public knowledge stream.  If patents stifle follow-on knowledge 

contributions to the public stream, this raises the possibility that a firm’s patent strategy could 

undermine the long-run supply of ideas to the public knowledge stream.   Prior to the analysis we 

report here, empirical studies have not fully documented whether the expansion of patent rights, 

and the complex patent landscape produced by the combined patent strategies of multiple firms 

and universities, have had a causal impact on subsequent contributions to public knowledge.  We 
                                                 
2 Exceptions to the “refusal to license” arise when the Federal government exercises ‘march-in’ rights (insisting on 
licensing ideas they funded), and when antitrust is binding (Lewis & Yao, 1995, MacKie-Mason, 2002)   
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ground our predictions and analysis in the observation of patent-paper pairs, specifically the 

impact of patent grant on the future public knowledge stream that builds upon the paired paper.   

Theoretical arguments highlight the rising numbers of patents over inputs into scientific 

research (such as gene sequences, cloned laboratory animals, and research reagents), and argue 

that these patents increase experimental costs and administrative burdens as scientists seek 

access to a wide variety of inputs, resulting in lower production of public knowledge – an anti-

commons effect (Heller & Eisenberg, 1998).  Published empirical evidence supporting this claim 

is conflicting. On the one hand, surveys suggest that academics ignore patent databases during 

research planning and that the most arduous restrictions come from material transfer (Walsh, 

Arora, & Cohen, 2003; Walsh et al., 2005).  On the other hand, recent quantitative studies of a 

sample of patent-paper pairs (based on a sample of Nature Biotechnology papers) show a modest 

(10%) decline in the number of times the paired publication is cited in future publications after 

the corresponding patent is granted (Murray & Stern, 2007a).  This decline was strongest in the 

late 1990s and early 2000s as researchers struggled to adapt to new legal constraints (Murray & 

Stern, 2008).  We therefore hypothesize: 

Hypothesis 1. The grant of a patent over knowledge claimed in a publication will negatively 

impact the rate of follow-on publications. 

 
Most firms follow complex patent strategies to strengthen their IP rights by expanding their 

breadth and strength.  Scotchmer (1991) argues that broader patents will more likely deter 

follow-on contributions to the private knowledge stream by providing stronger disincentives for 

follow-on knowledge production.  Following this reasoning, Lerner (1994) shows that patents 

with broad scope – measured by the number of patent classes – are more valuable.  Moreover, 

they will likely impinge upon many different follow-on research lines and thus have a deterrent 
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effect on a larger number of follow-on researchers (Aghion et al., 2005).  By the same logic, we 

argue that broader patents will be more likely to stifle follow-on knowledge production 

contributing to the public knowledge stream.  Thus, we hypothesize: 

Hypothesis 2. The broader the patent granted over the knowledge claimed in a publication, 

the more it will negatively impact the rate of follow-on publication. 

 
The number of claims captures patent strength: they are the legal articulation of the boundary 

of the property rights, with the principal claim defining the essential novel features of an 

innovation.  As such, claims measure the extent of the innovation protected by the patent 

(Harhoff & Reitzig, 2004; Lanjouw & Schankerman, 2001).  Recent evidence shows that the 

number of patent claims is a key determinant of the value of patent licensing agreements (Gans, 

Hsu, & Stern, 2008). We therefore postulate that stronger patents, proxied by the number of 

claims, have a more negative impact on follow-on pubic knowledge streams.   

Hypothesis 3. The stronger the patent granted over knowledge claimed in a publication, the 

more it will negatively impact the rate of follow-on publications. 

 
The type of patent owner (assignee) is a critical determinant of patent enforcement strategies 

(Somaya, 2003), with a high propensity for patent acquisition, enforcement and litigation by for-

profit private corporations, particularly compared to their public sector counterparts (Ziedonis, 

2004).  Assuming that follow-on researchers planning to contribute to the public knowledge 

stream have similar expectations regarding the propensity to litigate, then patents assigned to 

private sector (versus those assigned to the public sector) will have a greater negative impact on 

the number of times a paired paper is cited in future papers.  Therefore, we hypothesize: 
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Hypothesis 4: Grant of a patent over knowledge claimed in a publication will more 

negatively impact the rate of follow-on publications when the assignee is from the private 

sector compared to the public sector. 

 
In some instances, a single patent-paper pair on a foundational piece of knowledge with few 

substitutes may reduce follow-on contributions to the knowledge stream.  However, Heller and 

Eisenberg’s argument (1998) is grounded in the patent landscape surrounding public knowledge, 

not a single patent: the complex of patents that collectively impinge upon follow-on research.  

Faced with this landscape, researchers must navigate a morass of interpenetrating patent rights in 

order to contribute to the public knowledge stream.  As Shapiro (2001) describes: “what happens 

if, in order to scale the pyramid and place a new block on the top, a researcher must gain the 

permission of each person who previously placed a block in the pyramid, perhaps paying a 

royalty or tax to gain such permission?” In testing whether this effect shapes contributions to the 

public knowledge stream, we rely on two characteristics that define the patent landscape: thickets 

and fragmentation.  A patent thicket is “an overlapping set of patent rights requiring those 

seeking to commercialize new technology to obtain licenses from multiple patentees (Shapiro 

2001, p.1)”.  We measure this as the number of patents claiming the same set of (gene) 

knowledge inputs and hypothesize:  

Hypothesis 5: The denser the thicket of patents over knowledge claimed in a publication, the 

more it will negatively impact the rate of follow-on publications. 

 
While patent thickets may be salient to follow-on researchers, the fragmentation of these 

multiple competing patent rights across many owners is potentially more problematic for follow-

on researchers. Heller and Eisenberg (1998) outline the rationale behind this assumption, 
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arguing, “a proliferation of patents on individual fragments held by different owners seems 

inevitably to require costly future transactions to bundle licenses together… Such a proliferation 

of claims presents a daunting bargaining challenge. Unable to secure a complete set of licenses, 

firms choose between diverting resources to less promising projects with fewer licensing 

obstacles or proceeding… on the basis of incomplete information” (p. 699).  Measuring 

fragmentation by the number of owners in a patent thicket, we hypothesize:   

Hypothesis 6. The greater the ownership fragmentation of patents over knowledge claimed in 

a publication, the more it will negatively impact the rate of follow-on publications. 

 
We take the view that on balance, granting of paired patents has a negative effect on the rate 

at which follow-on knowledge accumulates (in subsequent publications).  Not all publications 

are the same, however, and so our claims must account for the type of knowledge captured in the 

converging public-private knowledge streams. When knowledge is immediately applicable to 

valuable problems and hence has greater downstream commercialization potential, the negative 

impact of the patent should be greater than for knowledge in paired papers with more ambiguous 

value.  Our reasoning is that patents are “probabilistic” property rights whose enforcement is 

fraught with uncertainty and variance (Lemley & Shapiro, 2005).  Consequently, follow-on 

researchers will assume that patents over immediately useful knowledge are more likely to be 

enforced that those over less useful knowledge. Thus, we hypothesize: 

Hypothesis 7. The more useful the knowledge in a patent granted over knowledge claimed in 

a publication, the more it will negatively impact the rate of follow-on publications. 

 

GENE PATENTING AND THE PRODUCTION OF GENETIC KNOWLEDGE 
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Concerns about how patenting affects the public stream of knowledge are found in many 

sectors of society (Heller, 2008).  Indeed, any organization that gains competitive advantage 

through proprietary (private) knowledge and heavily depends on public knowledge must 

understand this relationship.  Genetics is a uniquely suitable field in which to examine these 

issues, not least because of the tremendous wealth of data on individual genes, from GenBank, 

the United States Patent Office, the National Center for Biotechnology Information, and the 

Online Mendelian Inheritance of Man database.  It is also a setting where researchers incorporate 

knowledge into public and private knowledge streams through publications and patents, allowing 

us to identify patent-paper pairs, and where we can distinguish the commercial potential and 

other characteristics of different pieces of genetic knowledge.  Finally, human genetics is of 

critical importance to health and welfare, used by firms as the foundation for innovation for 

many applications, from medical and environmental to industrial and agricultural products. 

The gene patenting controversy exploded in 1991 when the National Institutes of Health 

(NIH) announced its patent applications on 350 gene segments discovered during the Human 

Genome Project (HGP).  The NIH Director clarified that this was a temporary measure to protect 

the Federal government’s right to these genes and to prevent preemptive patenting.  In 1992, 

James Watson, then head of the HGP, countered that the move was “lunacy” (The Independent, 

2007).  The decision brought entrepreneurs, pharmaceutical executives, investors, lawyers, 

ethicists and scientists together in contentious debate.  The validity of gene patents was 

uncertain, the scope of their property rights debatable, the ethics of the patents unclear and their 

impact on business and science contested. 
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Even in 1991, gene patents were not new:3  In 1982, the first “gene patent” had been issued 

to the University of California (Patent Number 4,363,877).  What changed was the possibility of 

patenting small chunks of DNA whose function was not yet determined, with no link to a 

specific disease and with only speculative utility.  “Traditional” gene patents of the 1980s 

resulted from labor-intensive gene hunting, with scientists gradually honing in on a particular 

gene implicated in a disease.  These patents clearly identified the gene, its function, the protein it 

coded for and the disease for which the protein might be used.  In contrast, the NIH patents were 

poorly characterized.  Working for the NIH in the early years of the HGP, Craig Venter had 

developed a new rapid sequencing technique that decoded many small chunks of DNA called 

expressed sequence tags (ESTs); this neither required nor provided a deeper understanding of 

segment’s function and usefulness.  The NIH patents on these ESTs contained hundreds of gene 

segments but disclosed only a narrow understanding of their utility. The knowledge was limited 

to markers for individual chromosomes, primers, and templates (Holman & Munzer, 2000). 

Arguments over the NIH patents sparked a broader debate around the pros and cons of all 

gene patents.  On the positive side, biotech industry veterans noted that strong patent rights on 

human genes of therapeutic importance encouraged extensive investments in new therapeutic 

protein drugs. They also felt that if gene segments were useful they should be patentable.  They 

were afraid to undermine the important principle that patents provide incentives for private 

sector investment in research (Borson, 1995).  Many executives countered that strong patent 

claims to different parts of a gene would hamper follow-on research.  For example, while a 

                                                 
3 In 1980, the U.S. Supreme Court ruled 5 to 4 in Diamond v Chakrabarty (447 U.S. 303, 1980) to grant General 
Electric a patent on a genetically modified organism finding that "anything under the sun that is made by man," is 
patentable subject matter.  This massively expanded the landscape of patentable genomic knowledge, including 
genetic engineering techniques, engineered DNA or RNA, plasmids, transformed cells, tissue cultures, cell lines, 
hybridomas, plants, animals, antibodies, antigens, hormones, other proteins, vaccines, and diagnostics (Restaino & 
Takeuchi, 2006).  It also paved the way for patents on the use of human genes (DNA sequences in purified or 
isolated form, their usage and often their chemical composition). 
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company might be willing to pay a single licensing fee for access to a full gene that they could 

use for drug development, they were reluctant to sign multiple licenses on a plethora of gene 

segments that happened to map to a gene they discovered through long and costly R&D (Henry 

et al., 2002).   Research scientists concurred that gene patents could be problematic.  Some 

objected to the prospect that a corporation would end up “controlling a priceless resource” 

(Nash, 2000).  Others were reluctant to engage in curiosity-driven research about a particular 

gene if their results might be controlled by a private corporation.4  Many believed that this type 

of patenting would stifle the international collaboration for public knowledge production that 

characterized the HGP and instead would lead to a patent war among research institutions 

(Andrews, 1991).5 Some worried that a complicated patent landscape of gene segments could 

limit the freedom of researchers to determine the functionality of genes.  They were concerned 

that researchers might get embroiled in complex licensing to access different parts of the human 

genome, and that this would lead researchers to shy away from working on the most interesting 

and relevant diseases.  Public interest groups raised concerns that gene patents could increase the 

price of genetic tests to diagnose life-threatening diseases or limit the amount of medical 

research on such tests (Merz, 1999).   

In October 1992, Human Health Secretary Sullivan reversed the NIH policy. Nonetheless, 

companies and academic institutions rushed into the genome land grab.  By October 1996, the 

US patent office (USPTO) announced a backlog of patents with over 500,000 gene sequences 

(human and other species) – a project that would take one examiner 200 years and US$35 

                                                 
4 This fear was well founded: in 2000 Human Genome Sciences (HGS) received U.S. Patent No. 6,025,154 on gene 
CCR5. Their patent claimed the gene sequence and asserted it was a G-coupled protein receptor binding cytokines.  
In 1996, a year after the HGS patent application, NIH scientists reported that CCR5 bound HIV and could be used as 
an HIV treatment.  However, the HGS patent could be used to exclude scientists from developing such a treatment. 
5 Their fear was realized in June 1992 when the British government’s Medical Research Council filed its own patent 
applications for 1,000 partial human gene sequences (Veggeberg, 1992). 
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million to complete (Abate, 2000)!  By the end of 1997, the USPTO had issued over 400 human 

gene sequence patents (Jensen & Murray, 2005).  Throughout this period, gene patents were 

highly uncertain, probabilistic in nature and subject to wide variations in scope. In 2001, the 

USPTO finalized its utility guidelines for gene patents with the requirement that a human DNA 

patent must be specific – identify a specific gene target, the biological reaction involving a 

specific protein and have a real world use linked to a disease (Duke Law and Technology 

Review, 2001).   Nevertheless, a significant fraction of the human genome was subject to a 

complex gene patent landscape, with some genes covered by twenty different patents (Jensen & 

Murray, 2005).   

In February 2007, the Genomic Research and Accessibility Act (GRAA) was introduced into 

Congress “to prohibit the patenting of human genetic material”.  For those called upon to 

respond to the Act, the lack of systematic data defining the effects of gene patenting made it 

difficult to move the discussion onto a firmer empirical footing and away from a collection of 

anecdotes.  While our analysis does not examine the positive impact of patenting as it supports 

the private knowledge stream and thus spurs investment in human health, it does speak to the 

potentially detrimental impact of the IP on the long-run supply of public genetic knowledge. 

 
METHODS 

Empirical Approach 

We analyze the impact of gene patents on the rate at which scientists contribute to the follow-

on stream of public knowledge building on the gene papers, relying on several methodological 

and econometric advances.  First, we use publication citations to each gene paper (i.e. peer-

reviewed publications citing the focal paper) as a proxy for follow-on public knowledge 

accumulation.  While we would like to measure the rate of follow-on knowledge production 
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embedded in the public stream directly, it is difficult to gather systematic information for a large 

sample of publications.  Our citation-based approach follows a long literature using citations to 

trace the flow of ideas and their follow-on accumulation in later knowledge production (de Solla 

Price, 1965; Hall, Jaffe, & Trajtenberg, 2001; Posner, 2000).  The use of publication citations is 

subject to several caveats; first, it does not capture accumulation of non-disclosed knowledge.  

To counter this claim, we argue that a shift to secrecy still represents a reduction in follow-on 

contributions to the public knowledge stream because the reduction in disclosed knowledge has 

implications for future scientists. Second, we assume that published genetic knowledge is the 

relevant measure rather than forward citations in patents.  While citations in patents are also 

important, we are interested in whether there are changes in follow-on contributions to the public 

knowledge stream when patents claim the same knowledge.  Third, and most problematic, is that 

scientific citations capture follow-on citing behavior rather than follow-on knowledge 

production.  There is some evidence that citations are influenced by considerations beyond an 

information signal of knowledge exchange including friendship (Stigler & Friedland, 1975) and 

gender (Ferber, 1988). However, there is no direct evidence suggesting that citation behavior is 

narrowly contoured to the precise timing of events such as patenting or patent enforcement.   

Predicting the impact of gene patents on the follow-on public knowledge stream raises 

several identification challenges. Without a well-identified “experiment”, it is difficult to 

disentangle multiple factors underlying observed changes in follow-on knowledge accumulation.  

For example, any observed difference in citations between gene papers associated with patented 

and unpatented genes are difficult to explain.  First, gene papers associated with patents may 

simply be different in quality (higher or lower) compared to gene papers on unpatented genes.  

Indeed a growing body of evidence points out that scientific knowledge both published in 
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academic journals and patented is, on average, more highly cited over its lifetime than 

unpatented articles (from the same journal) (Huang, 2006; Murray & Stern, 2007a).  Second, 

genes associated with patents may be different from non-patented genes and those gene papers 

might thus exhibit different citations patterns.  We deal with these issues by focusing only on 

gene papers associated with patented genes.  We also take advantage of many observable 

measures of the genetic knowledge disclosed in a gene paper: the strength of its link to a 

particular disease, and the size of the current body of knowledge of its function etc.  However, 

our central methodological approach is the development and analysis of a sample of gene patent-

paper pairs.  Adopting Murray and Stern’s (2007a) identification strategy, we use patent grant as 

an exogenous shock and examine publication citation rates to the paper in the pre- and post-grant 

period (with the former serving as a control group for the latter). As noted above, in the period 

prior to patent grant, genetic knowledge is disclosed in a paper and contributions to future public 

knowledge stream building on that paper accumulate in an institutional setting characterized by 

public norms and practices. This environment changes with the grant of the paired gene patent, 

and follow-on accumulation takes place in the shadow of formal legal private property. By 

comparing the difference in gene paper citations in the pre- and post-grant period for those 

affected by the patent grant to the same difference for unaffected gene paper citations, we can 

evaluate the precise impact of the change – a so-called differences-in-differences approach to 

identification.   

The management literature and the program evaluation literature in economics use a variety 

of similar changes in the institutional environment of a piece of knowledge as an empirical 

strategy to deepen our understanding of the innovation process.  The impact of incorporating a 

patent into an industry standard is assessed by comparing the pre- and post-standard setting rate 
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of patent citations (Rysman & Simcoe, 2008).  Likewise, management scholars use the exit of a 

firm from a product line or sector to explore whether a firm’s innovative knowledge dies with it, 

even though it is already disclosed in patents (Hoetker & Agarwal, 2007).  More salient for our 

analysis, Furman and Stern (2006) explore whether depositing enabling materials linked to 

specific publications increases the cumulative public knowledge stream measured with citations. 

The identification approach implicit in gene patent-paper pairs relies on two assumptions.  

First, because differences in the time between scientific publication and the granting of the 

paired patent provide important variation, we must determine whether the timing of gene patent 

grant is random, and assume that it is not anticipated by those who accumulate and cite the gene 

paper in the future public knowledge stream.  This assumption is particularly strong in the gene 

patenting case given the significant uncertainty in the likelihood of granting a gene patent in our 

time period.  Second, we assume that gene patent-paper pairs claim the same piece of 

knowledge.  We do this by precisely linking the patent and the paper via the disclosed gene 

sequence.  This improves on the specificity of prior works (e.g. Murray & Stern, 2007a; Sampat, 

2005) by ensuring the patent and paper are “paired” by knowledge claimed in the patent. 

 
Data, Sample and Measures 

We construct a novel panel of gene patent-paper pairs based on the population of 4,270 U.S. 

patents claiming uses of human genes as identified by stringent bioinformatics criteria (Jensen & 

Murray, 2005).  The definition of a gene patent is specific: the gene sequence must be at least 

150 nucleotides in length and match (e-value of zero) a human gene sequence (mRNA transcript) 

rather than another organism in the National Center for Biotechnology Information (NCBI) 

RefSeq public database. The resulting U.S. patents covered 4,382 or 18.5% of all known human 
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genes (approximately 23,688 genes). Figure 2 shows the distribution of these 4,270 granted gene 

patents by application year. 

------------------------------- 
Insert Figure 2 about here 
------------------------------- 

 
To develop and identify the patent-paper pairs for these gene patents, we used a semi-

automated search of the Thomson ISI Web of Science database which offers comprehensive 

coverage of peer-reviewed scientific research articles: (1) all patent inventors must appear as 

authors (a more stringent matching algorithm than that followed by Murray and Stern (2007a)); 

(2) publication must include the disclosed gene sequence; (3) patent abstract and application 

dates must fit the publication abstract and publication dates.6  The match produced 1,498 

matched patents.  Finally, in those instances where a gene paper was paired with more than one 

gene patents, we included only the first patent as the paired patent (although the subsequent 

patents were included when we constructed our patent thicket measures).  The final sample 

consists of 1,279 patents corresponding to 1,279 unique patent-paper pairs covering 2,637 genes.  

To ascertain whether this paired patent sample differed from the full gene patent population, we 

compared the means and standard deviations of observable patent characteristics of the final 

sample versus starting population.7 We found almost all of them to be statistically similar.8  

The variables used in this study are based on observable characteristics of the gene papers 

and their citations, gene patents, and genes sequences as described in Table 1.  Table 2 provides 

descriptive statistics, while Table 3 shows the correlation matrix for the variables. We draw our 
                                                 
6 The authors hold degrees in biomedical engineering and applied chemistry. In almost all the cases, the patent-paper 
pair assignment was unambiguous.   
7 These observable characteristics include patent application and grant year, patent grant lag, number of national 
classes, type of national classes, number of claims, number of inventors, number of assignees, number of cited 
patent references, number of citing patent references, number of non-patents cited, and several constructed patent 
measures based on Trajtenberg, Henderson and Jaffe (1997).   
8 Number of inventors, classes and non-patents cited differ slightly: 2.6 to 3.3, 6.2 to 6.3, and 479 to 459 in the 
sample versus population respectively. The actual differences in magnitude in all three cases are trivial.  



27 

 

data from five different sources. Data for the gene papers and citations are based on ISI Web of 

Science. Data for the gene patents is from the USPTO. Gene characteristics are gathered from 

NCBI, the Online Mendelian Inheritance in Man (OMIM) database of disease genes and a 

database of cancer genes – the Sanger Institute Cancer Gene Census.9   

------------------------------- 
Insert Table 1 about here 
------------------------------- 
------------------------------- 
Insert Table 2 about here 
------------------------------- 
------------------------------- 
Insert Table 3 about here 
------------------------------- 

 
Citation-year variables. Annual cite, our dependent variable, counts of the annual number 

of citations the gene paper receives beginning in the year the paper was published, continuing 

until 2006. As a conservative test, we report results that exclude any author self-citations –

defined as citations of papers written by any author of the focal paper.10 The total number of 

gene-paper year observations is 12,830. The mean level of annual cite is thirteen (with a 

minimum of zero and a maximum of 294) and by the end of the period, the average article has 

accumulated 148 citations over its lifetime as measured by the total cite for each gene paper.  

The citation year measures the calendar year in which a given citation is made.  The paper age 

describes the age of the gene paper when a given citation is made, thus a citation made in 2000 to 

a paper published in 1998 is two years old.  The average age of a citation in the sample is about 

five years, while the average citation year is 2001.   

                                                 
9 First published in Futreal, P.A. et al. (2004) “A Census of Human Cancer Genes.” Nature Reviews Cancer, 4: 177-
183, which summarizes more than two decades of searching. The Cancer Gene Census is updated on Wellcome 
Trust Sanger Institute (2006): http://www.sanger.ac.uk/genetics/CGP/Census/ 
10 As an additional test we used two other variations of the citation data: (1) excluding organizational self-citations 
(defined as citations of papers written by any author from the same organization as the focal paper); and (2) 
including author and organization self-citations. In both cases, the results remain essentially unchanged: the 
directions of the coefficients are similar and the differences in their magnitudes are very small.  
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Paper variables. Several independent variables capture characteristics of the gene paper.  

Paper year is the year the paper is published: the average is 1997 (minimum 1988 and maximum 

2005).  We then develop a series of gene paper variables based on a paper’s authors and their 

affiliations.  Number of authors counts the number of authors on the paper (mean = 7.28).  

Number of addresses is a count of the number of addresses that appear on the paper, measuring 

the number of different organizations involved in knowledge production (mean = 2.72).  U.S. 

address is a binary variable capturing whether at least one of address is in the United States and 

reflecting the affiliation of the paper authors. Public address is a binary variable describing the 

condition under which at least one listed address is from a public institution (defined as 

universities, government research organizations and laboratories).  We then construct the binary 

variable private address capturing whether there is at least one private sector address on the 

paper, coding pharmaceutical, biotechnology and other private sector corporations.  Impact 

factor is a proxy for the journal quality in which the gene paper is published (mean = 9.75). 

Constructed by ISI and published in their annual Journal Citation Reports, it varies between 1 

and 33.5.   It is defined as the number of current year citations divided by the source items 

published in that journal during the previous two years.  While the impact factor is re-calculated 

annually, the rank ordering of journals shows little or no variation over time; we therefore use 

2005, the last paper publication year in our sample.  The gene papers in our sample come from a 

small number of high quality journals.  As shown in Table 4, only ten journals account for more 

than fifty percent of the gene papers.  These include general journals such as Science and 

Natures as well as more specialist journals: Genomics, Nature Genetics, Cell etc.   

------------------------------- 
Insert Table 4 about here 
------------------------------- 
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Patent variables. A series of variables capture the temporal effects of a patent grant.  Patent 

application year is the year in which the patent application is made (mean = 1997) while patent 

grant year is the year in which the patent is granted (mean = 2000).  Patent grant lag is the 

elapsed time between patent application and patent grant (mean = 3.30).  We also define the 

variable patent in force, which is a dummy variable equal to one for all years after a patent is 

granted and zero prior to patent grant.  The mean of patent in force is 0.58, suggesting that our 

citation-year observations are almost equally distributed between years when patents are in 

operation and those when patents are not.   Patent window is another dummy variable which is 

coded one during the year in which the patent is granted and zero otherwise (mean = 0.1).  

We then developed a series of variables intended to denote characteristics of the patentees.  

Number of inventors and number of assignees measure the number of inventors (mean = 2.6) and 

assignees (mean = 1.1) listed on the patent respectively.  Public assignee is defined in the same 

way as public address whether at least one of patent assignees is from a public (academic or 

government) institution (mean = 0.58). In addition, all public assignee denotes instances when 

all patent assignees are from a public institution (mean = 0.54).   Similarly, private assignee is a 

binary variable to denote cases when at least one patent assignee is a private corporation (mean = 

0.46) while all private assignee denotes all patent assignees from private corporations (mean = 

0.42). U.S. assignee is set to one when at least one patent assignee is U.S. based (mean = 0.79).   

We constructed additional patent variables in an attempt to capture various characteristics of 

the IP rights granted in the patent.  Patent scope, following Lerner (1994), is defined as the 

number of national classes in which the patent is categorized (mean = 6.20) while the number of 

claims in the patent (mean=15.61) is one measure of patent strength (Scotchmer, 1991).  To 

analyze the impact of increase in scope from the mean, we constructed the measure based on the 
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actual number of classes minus the mean number of classes. To analyze the impact of increasing 

strength, our measure captures the actual number of claims minus the mean number of claims.11    

Patent-gene variables. As described above, the genetics setting allows us to measure the 

patent thicket directly.  For our sample of 1,279 gene patent-paper pairs, each paired patent 

grants rights over one or more genes (there are 2,637 genes in our sample) and is the initial 

patent covering the gene paper.  From the total gene patent population of 4,270 patents, we count 

the total number of patents eventually associated with each gene in the focal pair. We then break 

our count into five categorical variables: gene patent 1 is a binary variable which is equal to one 

for patented genes that are claimed by one patent including the focal patent (mean = 0.335), gene 

patent 2 to 4 is for genes with 2 to 4 patents (mean = 0.523), gene patent 5 to 7 for genes with 5 

to 7 patents (mean = 0.099), gene patent 8 to 10 for genes with 8 to 10 patents (mean = 0.025) 

and finally gene patent 11 to 20 for genes with 11 to 20 patents (mean = 0.017).12 Table 5 gives 

the distribution of genes by number of times patented.   

------------------------------- 
Insert Table 5 about here 
------------------------------- 

To capture the degree of fragmentation of the gene(s) claimed by a particular patent i, we 

develop and construct the patent-gene fragmentation index.  We first calculate a measure of gene 

fragmentation (for each gene) based on its Herfindahl index (herfgene): the sum of the squares of 

the shares of gene of each individual ownership (private firm or public organization). As more 

than one gene is associated with many of our patent-paper pairs, we then develop the patent-gene 

fragmentation index for each patent: 

                                                 
11 We analyzed both the impact of increase in patent scope and the impact of increase in scope from the mean (or 
positive deviation). The regression results are similar across both procedures. Similarly, we analyzed both the 
impact of increases in patent strength and the impact of increases in strength from the mean (or positive deviation). 
The regression results are similar across both procedures. We report the latter in Table 7. 
12 As genes claimed by more than 10 patents (i.e. 11 to 20 patents) represent only about 1.7 percent of the total 
observations in our sample, we have aggregated them into one category.     
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            ngenei 
∑(herfgenej)/ngenei    (1)  

 j=1 
 
where j indexes the number of genes, ngene, claimed by the particular patent i and herfgene is 

the computed Herfindahl index for each gene claimed by the same patent.  This weights gene 

fragmentation across all the genes in the gene patent-paper pair. There is more fragmentation as 

the index approaches zero. The mean of the patent-gene fragmentation index is 0.67 (min 0.11 -

most fragmented and max 1 - least fragmented). In order to make it more intuitive, we subtract 

this index from unity to denote more fragmentation with increasing index value (i.e. a value of 0 

denotes no fragmentation while 0.89 denotes most fragmentation). To analyze the impact of 

increases in patent-gene fragmentation from the mean, we construct an additional measure by 

subtracting (1-mean fragmentation index) from (1-fragmentation index). The resulting measure 

is simply mean fragmentation index minus fragmentation index.13  

We also explored the types of genes in our sample, specifically whether there is a link 

between the focal gene and a specific human disease at the time of its patent grant, as a proxy for 

its immediate usefulness and potential for commercialization. We did this by determining 

whether at least one of the genes in the gene patent-paper pair is listed in OMIM as expressing a 

human disease related phenotype – OMIM gene – the mean of 0.25 suggests about 25% of genes 

in our sample are linked to a human disease.  Likewise cancer gene captures whether the focal 

gene is listed in the Sanger Institute Cancer Gene Census as a known cancer gene (mean = 

0.076).  Finally disease gene is a binary variable with captures whether the focal gene is listed 

either in OMIM or in Cancer (mean=0.27). Table 6 shows the linkage to disease and other key 

patent characteristics for the top twenty most patented genes. 

                                                 
13 Again, we analyzed both the impact of increases in fragmentation and the impact of increase in fragmentation 
from the mean fragmentation (or positive deviation). The regression results are similar across both procedures. We 
report the latter in Table 8. 
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------------------------------- 
Insert Table 6 about here 
------------------------------- 

 

Model Specification and Estimation  

Our dependent variable is the annual count of citations received by each gene paper in peer-

reviewed journals (tracked by ISI) in every year since its publication. As this is a highly right-

skewed count variable that takes on non-negative integer values, we use a nonlinear regression 

approach to avoid heteroskedastic, non-normal residuals (Hausman, Hall, & Griliches, 1984). 

There are two ways to deal with the discrete nature of such count data: the Poisson regression 

model (PRM) or the negative binomial regression model (NBRM), a generalized form of the 

Poisson regression (Hausman, Hall, & Griliches, 1984). The Poisson distribution assumes the 

conditional mean of the outcome is equal to the conditional variance. However, as our dependent 

variable exhibits over-dispersion with conditional variance significantly greater than the 

conditional mean indicated by the likelihood-ratio (LR) test (Cameron & Trivedi, 1998),14 this 

assumption is violated.15  Hence, we employ the negative binomial regression model, which 

overcomes the problem of over-dispersion by assuming a gamma distribution for the conditional 

mean of the dependent count variable, and therefore allows the conditional mean and variance to 

vary.16 

We also assumed that the annual forward citations will depend on the specific calendar year 

in which citations are being accrued (citation year) and the number of years since the gene paper 

was published (paper age). As we are interested in whether the grant of the paired patent 
                                                 
14 H1: E(yit)<Var(yit) is supported. 
15 Note also that the standard errors from the Poisson regression model may be biased downwards resulting in 
spuriously large z-values (Cameron & Trivedi, 1986). The z-tests may over-estimate the significance of the variables 
in the case of over-dispersion in the data (Long, 1997). The results of the Hausman (1978) test also support the use 
of fixed effects negative binomial regression model. 
16 In our data, the goodness-of-fit test rejected the Poisson distribution assumption and indicated a zero-inflated 
distribution, showing further support for the negative binomial regression model. 
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changes the annual citation count, we include our main explanatory variable, patent in force, in 

the marginal effects equation (2).  We also include the variable patent window allowing us to 

account for the fact that in the actual grant year of the patent, the impact of IP rights may be 

noisy. In equation (2), we rely on the observable characteristics of the papers to capture paper-

by-paper differences in the underlying annual citation trend:  

FCi,t = f (εi,t; αpatent_windowi,t + βpatent_in_forcei,t + 
φnumber_of_authorsi + ξnumber_of_addressesi + δUS_addressi + ηpublic_addressi 
+ μimpact_factori  + χpaper_age fixed effectst-paper_year + ψcitation_year fixed effectst)       (2) 

 

From equation (2), it is possible to develop a further specification. Instead of observable 

paper characteristics, equation (3) uses paper fixed effects for each paper to account for variation 

across individual papers.   

FCi,t = f (εi,t; αpatent_windowi,t + βpatent_in_forcei,t + λpaper fixed effectsi +  
χpaper_age fixed effectst-paper_year + ψcitation_year fixed effectst)         (3) 

 

In both equations we can test whether the citation rate to a paper changes after the paired 

patent is granted, accounting for fixed differences in the citation rate across papers with different 

observable characteristics (2) or across each paper (3).   Using these two models for the 

assessment of the impact of patent grant, we then explore how patent strategy, including the 

various characteristics of the patent right, affects the supply of public scientific knowledge. In 

each case, we examine the interaction effects between patent in force and the particular patent or 

knowledge characteristics of interest represented by the last term in equation (4). 

FCi,t = f (εi,t; αpatent_windowi,t + βpatent_in_forcei,t + λpaper fixed effectsi + χpaper_age 
fixed effectst-paper_year + ψcitation_year fixed effectst + γpatent_in_force interactionsi,t)      (4) 

 

RESULTS 

Our first analysis focuses on the impact of patent grant on the annual citation rate of paired 
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papers. In all our Tables, we report the coefficients as incidence rate ratios (IRR) which can be 

derived by exponentiating the coefficients, βk of the independent variable xk of the negative 

binomial regression models. For a unit change in the independent variable xk, the dependent 

variable changes by a factor of exp(βk), ceteris paribus. In our case, the IRR can be interpreted as 

the factor change in annual citations received in a given year due to a unit increase in the 

regressor. For example, an IRR of 1.03 in the coefficient indicates a 3% increase in the 

dependent variable for a unit increase in the independent variable, all else equal. 

Table 7 shows an estimate of a series of models using the negative binomial specifications as 

outlined above.  Model 7-1 is a baseline model that estimates the annual citation count including 

fixed effects for paper age and citation year to account for the time trend in the citations and 

then including a series of observables on the gene papers including number of authors, number of 

addresses, U.S. address and public address.  We also account for the quality of the journal in 

which gene papers are published, using the journal impact factor. In Model 7-2, we include the 

same variables and add in the post-patent grant effects using patent window and patent in force.  

In this model, which is a test of Hypothesis 1, we find that the grant of a gene patent negatively 

impacts the rate of follow-on publications as shown by the 17% decline in expected rate of 

forward citations to the paired gene paper (significant at the 0.1% level). This result is supported 

(although the effect is smaller) in the more stringent test provided in Model 7-3 which uses the 

full differences-in-differences estimate with a separate paper fixed effect for every article and 

the complete set of paper age and citation year fixed effects.  In this rigorous specification we 

find the estimated negative impact of IP rights on forward citations to the paired paper is 5% (at 

the 1% level). This estimate is identified through the within-article comparison between the pre- 
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and post- gene patent grant citation levels and is consistent with prior empirical findings (Murray 

& Stern, 2007a).   

------------------------------- 
Insert Table 7 about here 
------------------------------- 

 

Impact of patent scope and strength. To shed light on this effect, we analyze the degree to 

which patent characteristics contour the impact of patent grant by interacting the patent in force 

dummy with such characteristic measures as the patent scope and patent strength.  In Model 7-4, 

we find that there is a statistically significant, although quite modest, impact of broader (scope) 

gene patents on subsequent citations to the gene paper (both relative to the mean and in absolute 

terms), with an incremental decline of about 1% (at the 0.1% level) on subsequent citations for 

every unit increase in number of patent class. Hypothesis 2 is therefore supported but with only a 

modest quantitative effect. Model 7-5 repeated this analysis for the strength of patent in terms of 

the number of legal claims. We find that there is no significant effect on subsequent citations of 

the publication as the patent is increasing in its number of claims (both relative to the mean and 

in absolute term). Therefore, hypothesis 3 is not supported suggesting that the number of claims 

in a given patent do not have an impact on how scientists engage in follow-on research on 

patented papers. Finally, Model 7-6 incorporates patent in force, the interaction effects of patent 

scope and patent strength. Results are stable and consistent with Models 7-3 to 7-5.   The 

importance of patent scope in shaping the impact of patent enforcement on public knowledge 

production not only speaks to the responsiveness of follow-on researchers to differences in 

patent scope but most likely also to differences in enforcement. 

Impact of patent ownership. Another feature of the gene patenting debate that relates to 

enforcement highlights the relative role of public versus private patent holders in stifling follow-
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on public knowledge production via aggressive enforcement (or enforcement threats).  On the 

one hand, the debate over patenting argues that academic patent owners are particularly 

problematic and largely contributes to the anti-commons effect (Heller & Eisenberg, 1998).  On 

the other hand, much of the attention rests on private sector patentees in the gene patent debate.  

Our next set of analyses explores these two different possibilities and attempt to adjudicate 

between then by testing hypothesis 4. We estimate how the characteristics of the patent assignees 

(and its attendant property rights) influence the rate of forward citation through a set of 

interaction effects between the variable patent in force and dummy variables for the patent 

assignee type as shown in Table 8. 

------------------------------- 
Insert Table 8 about here 
------------------------------- 

 

Model 8-1 compares the interaction between public assignee and patent in force with that of 

no public assignee and patent in force. Model 8-2 provides comparison of the interaction 

between private assignee and patent in force with that of no private assignee and patent in force. 

Model 8-3 checks on models 8-1 and 8-2 by examining the interaction effect between all public 

assignee and patent in force with that of all private assignee and patent in force. Model 8-1 

shows a significant (at the 0.1% level) and negative impact of about 8% for no public assignee 

interaction, while the public assignee interaction is not significant. Model 8-2 shows a significant 

(at the 0.1% level) and negative impact of about 9% on private assignee interaction while no 

private assignee interaction is not significant. Model 8-3 forces the omitted category to be mixed 

and shows a significant (at the 1% level) and negative effect of 6% on all private assignee 

interaction while all public assignee interaction is not significant. Taken together, these findings 
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strongly support hypothesis 4 and suggest that for the production of public knowledge (in human 

genetics), the main impact of patenting arises through private sector gene patents.17     

Impact of complexity of patent landscape. Models 8-4 and 8-5 examine the role of the 

patent landscape in influencing the expected citation rates of gene papers, with a particular 

emphasis on the characteristics of ownership fragmentation.  First, however, we examine the 

interaction of patent grant with characteristics of the patent thicket regardless of the ownership 

arrangements.  Recall that our interaction term separates gene papers into different groups 

according to the number of associated gene patents that claim the underlying gene.  Model 8-4 

shows that patent grant over genes associated with 1 patent significantly depresses the citations 

by more than 7% while genes patented 5 to 7 times show a significant post-grant decline of more 

than 9% – a modest 2% increase due to denser “patent thickets” compared to genes with only 

one patent. However, impacts of genes patented 2 to 4 times, 8 to 10 times and 11 to 20 times are 

not statistically significant. While the 2% difference provides weak support for Hypothesis 5, the 

underlying relationship between gene patent grant and long-run public knowledge production is 

clearly not linear in the number of gene patents and does not increase smoothly with denser 

patent thicket.  We therefore turn to an analysis of the ownership fragmentation of such patent 

thickets to examine whether ownership complexity contours the impact of patents on long-run 

knowledge production. When we analyze the impact of increase in fragmentation in Model 8-5, 

we find strong support for hypothesis 6.  Specifically, we find that over and above the baseline 

decline in expected citations of 5% (Model 7-3), there is an incremental 7% significant decline 

                                                 
17 To check and insulate our results against any possibility that the interaction effects in a non-linear model are not 
the same as their cross-partial derivatives, we performed additional regressions similar to the one described in Model 
7-3 on split samples separately for Models 8-1 to 8-8 (except Model 8-5). For example, in Model 8-1, we performed 
the regression in the sub-sample with public assignee only (7718 observations) and then another regression on the 
sub-sample with no public assignee only (5112 observations). We repeated this procedure for the remaining models. 
These split sample regressions yield consistent and robust results as those shown in Table 8 and our findings are 
unchanged across the models. 
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(at the 5% level) in follow-on knowledge production for every unit increase in fragmentation of 

the patent thicket (relative to the mean and in absolute terms)18. For example, for any given 

patent, an increase in ownership from one to two organizations for a claimed gene would result 

in an incremental 3.5% decline in the forward citations of the paired paper. This finding provides 

the first direct test of the impact of patent fragmentation in the life sciences (that we are aware 

of) and confirms the results of Ziedonis (2004) in the context of the semiconductor industry that 

fragmented patent thickets do strongly influence the innovation process.   

Impact of usefulness of patented knowledge. In our final set of models, we examine the 

ways in which the characteristics of the knowledge disclosed in the gene papers and their paired 

patents have an impact on the degree to which patent grant affects the expected rate of forward 

citations.  We do so by interacting the patent in force variable with a set of variables designed to 

capture key genetic knowledge characteristics that proxy for the immediate usefulness and 

commercial importance of the gene. Model 8-6 compares the interaction between OMIM gene 

and patent in force with that of no OMIM gene and patent in force. There is about 8% significant 

decline (at the 0.1% level) for OMIM genes compared to no statistically significant decline in 

annual forward citations for non-OMIM genes. Model 8-7 does the same for cancer gene and no 

cancer gene.  We find that there is a statistically significant impact of patent grant for both 

categories of gene, but the decrease is 11% for cancer genes versus 4% for non-cancer genes– a 

statistically significant difference of 7%. Finally, model 8-8 compares the interaction effects of 

disease gene versus no disease gene. We find a significant decline of 6% (at the 1% level) for 

disease gene compared with a decline of 4% for non-disease gene (at the 5% level). This 

difference of 2% is statistically significant. Taken together, the more immediately useful and 

                                                 
18 In our analysis of the impact of increase in fragmentation using the measure presented in Equation 1, the 
regression result (available upon request) also showed a 7% significant decrease as fragmentation increases. Thus, 
our findings are consistent.  
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relevant the patented (genetic) knowledge, and the greater its potential for downstream 

commercialization, the more negative the impact of gene patent grant on subsequent published 

citations of that knowledge. Hypothesis 7 is therefore supported and we can clearly state that the 

negative impact of patent grant is centered on genes and genetic knowledge that is critical for 

human diseases.19 

 
DISCUSSION 

This paper provides the first large-scale systematic evidence of the impact of patenting on the 

long-run supply of public (published) knowledge in human genetics.  Prior researchers who 

consider these questions typically take a narrow perspective; a single case study (e.g. Orsi and 

Coriat, 2005 on the BRCA1 diagnostic tests), a single sector (e.g. Cho, Illangasekare, Weaver, 

Leonard, & Merz, 2003 on genetic testing) or only litigated patents (Holman, 2007).  Using the 

differences-in-differences approach, we confirm prior results arguing for the negative impact of 

patent grant on the future production of the public knowledge stream.   

More importantly, we significantly extend our understanding of these issues by articulating 

how patent strategies – as defined by patent scope and strength, patent ownership – public versus 

private, and the complexities of the patent landscape that is constructed through the strategies of 

multiple patent holders together affect the long-run production of public knowledge.  Taken 

together, our results suggest that patent strategies pursued by firms and others, in their attempt to 

build a private knowledge stream, are tightly coupled to the long-run public knowledge stream. 

Prior scholarship has articulated a positive relationship between these two knowledge streams 

                                                 
19 As an additional check against potential co-linearity among the fixed effects, we also performed the “fully 
interacted” specification on regression Models 7-3 to 7-6 and 8-1 to 8-8 i.e. instead of paper fixed effects, paper age 
fixed effects and citation year fixed effects in the models, we include paper fixed effects and the full set of paper 
year-paper age interaction dummies. The results are consistent and robust across all the models as those reported in 
Tables 7 and 8 – the coefficients have similar direction and almost identical magnitude (available upon request). 
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(Cockburn & Henderson, 1998; Cohen & Levinthal, 1990; Mowery, Nelson, Sampat, & 

Ziedonis, 2001; Zucker et al., 1998), focusing on how public knowledge is appropriated by 

private firms.   However, our work argues that while this link is critical, if we take a more 

reciprocal approach and consider the impact of private knowledge production strategies on the 

long-run production of public knowledge, then we uncover the unintended consequences of 

firms’ patent strategies. 

Our study provides policymakers and managers with novel evidence that can be brought to 

bear in the ongoing gene patent debate.  First, our analysis shows that gene patenting is not rare: 

among the population of 4,270 patents on human genes (Jensen & Murray, 2005), at least 35% 

are associated with gene patent-paper pairs.  This confirms the importance of patent-paper pairs 

as a prevalent disclosure strategy pursued by firms and by academics in human genetics that 

allows them to incorporate their genetic knowledge into both the public and private institutional 

spheres.  It also shows that gene patent-paper pairs are not exclusively a disclosure strategy in 

the domain of either academic or for-profit organizations.  Instead, both types of organizations 

contribute (at least some of) their genetic knowledge in the form of patent-paper pairs.  Finally, 

pairs are not only a form of disclosure for obscure, poorly understood genes, but also for disease 

genes (about 27% of our sample), including those implicated in cancer.  Consequently, patent-

paper pairs are an essential tool shaping the production, disclosure and accumulation of genetic 

knowledge in our economy.   

Unlike previous studies of gene patenting, our analysis is comprehensive: we include 

controversial genes patents such as the BRCA1 and BRCA2 patents granted to Myriad Genetics 

for the use of a diagnostic to test for an important breast cancer mutation (Orsi & Coriat, 2005) 

and less well-known genes.  The 1,279 gene patent-paper pairs we analyzed disclose 2,637 gene 
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sequences in publications and claim their use in U.S. patents – more than 11% of the known 

human genes (as defined by NCBI).  From this broad perspective, we estimated that the negative 

impact of patent grant on the future public knowledge production, as measured by the annual rate 

of forward citations to the paired paper was about 5% (in the most stringent differences-in-

differences specification).  This result is consistent in direction and magnitude with prior 

research using patent-paper pairs (Murray & Stern, 2007a), but is more robust because it 

provides evidence over a much longer time horizon, using a larger and more diverse sample of 

publications.  Our empirical approach also makes a tighter link between the patent and the paper 

by using the specific gene sequence as a “key” and by focusing only on those patent-paper pairs 

claiming property rights over gene sequences.   

A strict interpretation of these results suggests that follow-on genetic researchers forego 

about one in ten research projects (or more precisely research publications) because of the causal 

impact of the gene patent grant. Of course, as noted earlier, it is possible that researchers are 

continuing their research and contributing to the public knowledge stream while engaging in 

strategic citing behavior (citing papers not covered by the gene patent).  However, our evidence 

that the patent grant effect is highly contingent upon patent scope, patent ownership and the 

fragmentation in ownership supports the notion that these outcomes are driven more by patent 

enforcement issues and complexities in bargaining and transactions costs than strategic citing.  It 

is hard to envision a setting in which strategic citing behavior would be so responsive to the 

details of the patent landscape, particularly given the evidence that researchers do not directly 

analyze the relationship between patents and their research inputs via the USPTO (Walsh et al., 

2005).   
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Four further elements of our results elaborate and deepen our understanding of the role of 

patents on the public stream of genetic knowledge.  First, the effect of gene patents is centered 

on patents owned by the private sector.  In contrast to the prior literature, which finds that public 

sector patents have a greater negative impact on forward citations, we found patents assigned to 

private sector firms have a more negative impact – a decline of 6% to 9% compared with only 

0% to 3% for academic patents.  We interpret the greater impact to mean that private sector 

enforcement (or anticipated to enforcement) on follow-on researchers was more aggressive or is 

anticipated to be more aggressive by these firms during the period of our analysis which spans 

1988 to 2006.  This does not necessarily mean that all follow-on knowledge production has 

halted. Instead, follow-on researchers could respond (more strongly to private sector patent 

assignees) by increasing the secrecy with which they continue their research on patented genes.  

This would show up in our data as fewer forward citations to the paired gene paper.  However to 

the extent that knowledge accumulation is most effectively undertaken when follow-on 

researchers contribute to the public knowledge stream, we interpret the 8% decline in forward 

citations that accompanies private sector gene patenting as a net loss to long-run public 

knowledge production, a condition that could exacerbate under high level of defensive patenting 

by the firms.  The finding is counter to previous scholarship using a sample of biotechnology 

papers and finds that over the shorter period (1997 to 2003) paired public sector patents had a 

more negative impact on forward citations than private sector patents (Murray & Stern, 2007a).  

However, in follow-on work, these authors show that the public sector effect is ameliorated over 

time (Murray & Stern, 2008), a result that is consistent with our finding that publicly owned 

patents have little impact in the long run.  Furthermore, in gene patenting there is considerable 

supporting evidence that the private sector has been aggressive in its enforcement strategies with 
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other firms and with public sector organizations, particularly academic medical centers.  Indeed, 

in additional analysis we find a particularly substantial decline in medical-center citations. 

Second, the notion that the negative impact of gene patents is due to patent enforcement is 

supported by our key result – the impact of patents on long-run public knowledge is increasing in 

the scope of patents.  This evidence shows that it is strong enforcement of broader patents or the 

probability of strong patent enforcement that drives the dampening effect of patent grant on 

public knowledge production. 

The third element of our results highlights the ways in which the patent landscape contours 

the long-run production of genetic knowledge.  Beyond single gene patents, scholars have 

debated whether and to what extent patent thickets and patent fragmentation impede follow-on 

innovation.  While Ziedonis (2004) finds evidence that complex patent thickets limit future 

patent contributions to the private knowledge stream (in the semiconductor industry), there is no 

empirical evidence that speaks directly to the relationship between the patent landscape and 

public knowledge production.  We take advantage of the specificity of gene sequences to 

develop the first large-scale empirical evidence of this type.  We show that while the relationship 

between patents thicket size and knowledge production is noisy (although the results are 

directionally as we predict), increasing ownership fragmentation contributes significantly to the 

negative impact of patent grant.  This suggests that while ownership concentration is an 

important source of competitive advantage for owners of the patent portfolio, fragmentation is 

more problematic for follow-on contributors to the public knowledge stream presumably because 

of the complexities and increasing costs of navigating and negotiating with many patent 

assignees in a fragmented patent thicket.   
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Lastly, beyond characteristics of individual patents and patent landscape produced around 

them, we also find that the negative effect of patents on follow-on public knowledge production 

is greatest for genes closely linked to human disease i.e. that are more immediately useful and 

with greater commercial potential.  While we would expect that gene papers on disease-related 

genes are more highly cited, our methodology allows us to distinguish between this “levels” 

effect and the effect of gene patent grant on annual citations.  In the case of the OMIM link to a 

disease phenotype, only the OMIM genes have a significant 8% reduction in forward citations, 

while the sample of proven cancer genes sees a negative impact of 11% compared with 4% in the 

non-cancer sample.  This is perhaps our most important finding because it suggests that the 

negative effect of patents lies right at the heart of the fight to improve human health and welfare.  

Moreover, it once again suggests that the impact of patents centers on those patents that are more 

likely to be enforced: owners of patents on valuable disease-linked genes are much more likely 

to engage in enforcement tactics such as “cease and desist” letters or to threaten litigation.  We 

find that papers on disease-linked genes are more severely impacted by the grant of a (gene) 

patent than those with no disease link. 

 

Implications 

Our findings have a number of implications for policy and management (we turn to the 

broader implications for scholars in our final section).  Policymakers should take our analysis as 

evidence that privately owned gene patent rights might have a detrimental long-run impact on 

specific lines of public genetic knowledge.  To the extent that our result on genetics are robust in 

other knowledge settings, this shifts the policy debate away from the role of academic patenting 

and instead highlights the relationship between industry and all those engaged in public 
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knowledge production.  It suggests that policymakers continue to explore the appropriate scope 

and strength of gene patents and provide greater clarity over their enforcement.  There are also 

policy choices that can ameliorate the impact of patents on researchers in academia.  

Specifically, a federally mandated experimental use exemption may be an important mechanism 

to facilitate follow-on knowledge production (Dreyfuss, 2004).  To date, industry has been 

opposed to the idea that academic researchers be formally exempt from patent rights 

(notwithstanding the fact that many academics take this right de facto).  The potential for a 

firm’s patent rights to stifle long-run public knowledge production may provide firms with more 

convincing evidence they need to support an experimental exemption and therefore potentially 

lift the stifling impact of their patent rights.   

For managers, our results suggest that there is a more complex and bi-directional link 

between a firm’s private knowledge stream and the public stream.  While public knowledge 

certainly makes a critical contribution to a firm’s private knowledge stream (indeed on average, 

the industry-assigned patents in our sample cite 434 non-patent references to public genetic 

knowledge), a firm’s patents, and the patent landscape that emerges, contour and stifle the public 

knowledge stream over the long-run.  This is consistent with a recent quantitative study 

illustrating the positive impact on public knowledge production – over 30% increase in 

publication citation when a firm makes its patented research materials more open and widely 

accessible to academic researchers (Murray, Aghion, Dewatripont, Kolev, & Stern, 2008).  As 

noted above, this stifling effect may be effectively mitigated by an experimental use exemption.  

Furthermore, firms may be able to ameliorate these effects by making changes in licensing 

requirements, practices and policies.  Patent pools or cross-licensing arrangements associated 

with particularly “useful” knowledge may reduce the negative effect of the complex patent 
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landscape.  We also suggest that access to information defining patent rights (held by public or 

private entities) on a gene-by-gene basis may help improve the impact of patent thickets.  At 

present there is no systematic, accessible and regularly updated source of information that allows 

a public or private sector scientists to establish whether and what patent rights pertain to specific 

genes.  The provision of such a service would be an important starting point for navigating a 

complex patent landscape and reducing the uncertainty with already probabilistic patents. 

As an important caveat, we should note that our analysis does not provide evidence for the 

potentially beneficial effects of patent rights as they are traditionally justified, for example as an 

incentive for commercial investments (Mazzoleni & Nelson, 1998), in the market for ideas (Gans 

et al., 2008) etc.  In the long-run, the tradeoff between patents’ negative effects on follow-on 

innovators and their positive incentive effect must be adjudicated.  

 

Future Research Agenda  

Our study recognizes the richness of the public and private institutional spheres in which 

knowledge is embedded (Dasgupta & David, 1994).  Beyond the choice of whether to publish 

ideas and to file for patents, the flexibility of these institutional arrangements provides 

individuals, firms, and communities with a wealth of opportunities to construct new approaches 

to knowledge production, disclosure and accumulation (Murray & O’Mahony, 2007).  This 

suggests a rich new research agenda placing knowledge work into its institutional context while 

at the same time highlighting the important, and sometimes overlooked, role played by firm 

strategy, particularly concerning IP decisions.  More specifically, it guides research questions for 

management scholars at the intersection of three literatures: strategic management of intellectual 
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property; institutional theory, particularly focused on the sociology of law and norms; and 

organization theory pertaining to knowledge work.  We examine each of these in turn. 

The patenting and publishing behaviors described in human genetics bring two institutional 

spheres together and, at times, into collision and conflict.  This collision is not unique to the life 

sciences.  Instead, it animates knowledge-based firms and knowledge workers in music, 

software, and beyond and holds important long-run implications for public and private 

knowledge production (Heller, 2008; Lessig, 2004; Scotchmer, 2004).  The richness of these 

interactions has been the focus of recent institutional scholarship, highlighting the ways in which 

these two institutional spheres shape knowledge production in academia (Biagioli, 2002; Colyvas 

& Powell, 2006; Kleinman, 2003; Murray, 2008; Owen-Smith & Powell, 2003).  However, these 

studies may have devoted too little attention to the complexity and flexibility of the private 

property sphere.  All too often, this literature conceptualizes the legal environment as rigid and 

inflexible, particularly in comparison to the informal norms of the public commons.  This is 

contrary to the insights from the sociology of law, which, while not focused on IP law, argues 

that individuals, communities and particularly firms are “immersed in a sea of law” (Dobbin & 

Kelly, 2007; Edelman, 1992; Kelly & Dobbin, 1999) and have many opportunities to influence 

their legal context.  This perspective suggests that just as scholars now examine how contributors 

to the public commons constitute informal norms (Fauchart & von Hippel, 2008; Oliar & 

Sprigman, 2008), we should also examine how firms (and other actors) construct the norms and 

practices of the private property sphere using the rich theoretic lenses of the law and society 

tradition. 

For scholars interested in the causes and consequences of firms’ IP decisions, our paper 

argues that while it is critical to understand the ways in which IP strategies provide for property 
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rights and competitive advantage (Gans & Stern, 2000; Somaya, 2003; Teece, 1986), we must 

also attend to their impact on long-run knowledge production (Scotchmer, 2004; Ziedonis, 

2004).  Specifically, IP scholars might consider private property and public commons 

institutions.  This focus resonates with the current interest in “open innovation” strategies 

(Chesbrough, 2003), but provides a broader, more institutionally focused framework for 

considering such issues.  

A central question raised by taking this approach is to understand whether and how firms’ 

strategies for engagement with the public commons i.e. using published literature, providing 

open source software code, or limiting IP enforcement, shape the long-term production of a wide 

range of public goods.  It is not enough for firms to assume that the public commons are robust 

to their intervention.  Specifically, our work suggests that more than simply a public good to be 

appropriated into the private knowledge stream (Cohen & Levinthal, 1990), the public commons 

are highly sensitive to patent strategy and the patent landscape that is produced.  Such an agenda 

turns the traditional approach to public goods on its head; current analysis on open innovation 

generally examines how firms capture the value of distributed innovation generated by 

individuals and communities who freely reveal their knowledge (Harhoff, Henkel, & von Hippel, 

2003; Lakhani & von Hippel, 2003).  Before we conclude that such strategies are a clever way of 

getting something for nothing, we must consider whether they limit the long-run production of 

the very public goods upon which many firms have come to rely.  Current studies of for-profit 

firms’ attempts to appropriate public goods hint at the complexity of the link between public and 

private knowledge production.  For example, some firms seeking advantage from open-source 

contributions to software code find that their strategies decrease the rate of code contributions 

(von Hippel & von Krogh, 2006).    
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What lies at the heart of these transformations?  The last element of our proposed agenda 

calls for a deeper understanding of knowledge work, of how it is embedded in the public and 

private institutional spheres, and how it is influenced by firm strategies as they operate within 

these spheres.  Why and how, for example, do knowledge workers contributing to the public 

commons respond to firms’ attempts to contribute to or appropriate their work? Do these 

responses change the types of individuals making such contributions or the types of 

contributions? Much of the existing scholarship on knowledge work assumes that the 

institutional and firm environments are relatively stable (Bechky 2003; Hargadon & Bechky, 

2006; Hargadon & Sutton, 1997).  However, the dynamic collisions between the public and 

private spheres suggest otherwise.  This raises new questions that can only be explored when 

organizational theorists attend to both firm strategy and the complex institutional environment. 

Recent studies show that novel arrangements emerge as individuals, firms and other actors 

develop solutions that make it possible to engage in the daily practice of knowledge while living 

with the law and with other institutional opportunities and constraints (Meyer & Argyres, 2004). 

Some of these solutions seem to derive from complex and nuanced contracts that allow for 

mutual co-existence of knowledge communities with distinctive aims and goals (Murray & 

Stern, 2008).  Others seem to be more organizational in nature, providing governance of the 

tensions through organizational devices such as committees etc. (O’Mahony & Bechky, 2008). 

However, there is still much to learn and the agenda will require scholarship bridging 

institutional theory, IP strategy and organizational theories of knowledge work.  
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TABLE 1 
Key Variable Definitions 

Citation-Year Characteristics 
Name Definition Source 

Annual cite Number of citations made by later papers to the (core) paper 
previously published in a given year 

ISI 

Total cite Total number of citations accruing to a paper over its lifetime ISI 
Citation year The year in which the forward citation is received ISI 
Paper age  Age of paper when a citation is made  ISI 

Paper Characteristics 
Paper year Year when paper is published ISI 
Number of authors Number of authors appearing on the paper ISI 
Number of addresses Number of unique addresses appearing on paper ISI 
U.S. address Binary variable (1/0) denoting at least one U.S. address ISI 
Public address Binary variable (1/0) denoting at least one public address ISI 
Private address Binary variable (1/0) denoting at least one private address ISI 
Impact factor Impact factor for journal in which paper is published ISI/ Journal 

Citation Report 
Patent Characteristics 

Patent in force 
 

Binary variable (1/0) set to 1 if citation is received in years after 
patent grant 

USPTO 

Patent window 
 

Binary variable (1/0) set to 1 if citation is received in year of patent 
grant 

USPTO 

Patent grant lag  Number of years between patent application and grant USPTO 

Patent scope Number of national patent classes USPTO 

Number of claims Number of claims in the patent USPTO 

Number of inventors Number of inventors appearing on patent  USPTO 

Number of assignees Number of assignees appearing on patent USPTO 

Public assignee Binary variable (1/0) denoting at least one public assignee USPTO 
All public assignee  Binary variable (1/0) denoting all public assignee USPTO 
Private assignee Binary variable (1/0) denoting at least one private assignee USPTO 
All private assignee  Binary variable (1/0) denoting all private assignee USPTO 
U.S. assignee  Binary variable (1/0) denoting at least one U.S. based assignee USPTO 

Patent-Gene Characteristics 
Gene patents Count of the number of patents for any given gene USPTO/ Jensen & 

Murray 2005 
Gene fragmentation 
(herfgene) 

Herfindahl measure of concentration of ownership for a given gene 
using assignees on list for gene patents 

USPTO/ Jensen & 
Murray 2005 

OMIM gene Binary variable (1/0) set to 1 if gene is listed in OMIM OMIM 
Cancer gene Binary variable (1/0) set to 1 if gene is listed in Wellcome Cancer 

Gene Census 
Wellcome Trust 

Disease gene Binary variable (1/0) set to 1 if gene is OMIM OR Cancer OMIM/ Wellcome 
Trust 
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TABLE 2 
Summary Statistics of Key Variables for Publications and Patents 

 
Citation-Year Characteristics 

Key Variables n Mean s.d. Min Max 
Annual cite  12830 13.34 25.04 0 294 
Total cite 12830 147.97 258.51 0 2369 

Citation year 12830 2001 3.48 1988 2006 
Paper age 12830 4.90 3.48 0 18 

Paper Characteristics 
Paper year 1279 1997 2.78 1988 2005 

Number of authors 1279 7.28 4.57 1 63 
Number of addresses 1279 2.72 2.00 1 16 

U.S. address 1279 0.80 0.40 0 1 
Public address  1279 0.84 0.36 0 1 
Private address 1279 0.35 0.48 0 1 
Impact factor 1279 9.75 8.59 1 33.46 

Patent Characteristics 
Patent in force 12830 0.58 0.49 0 1 
Patent window 12830 0.10 0.30 0 1 

Patent application year 1279 1997 2.57 1990 2003 
Patent grant year 1279 2000 2.66 1993 2005 
Patent grant lag 1279 3.30 1.51 0 11 

Patent scope 1279 6.20 2.99 1 25 
Number of claims 1279 15.61 14.20 1 137 

Number of inventors 1279 2.56 1.40 1 14 
Number of assignees 1279 1.13 0.42 1 4 

Public assignee  1279 0.58 0.49 0 1 
All public assignee 1279 0.54 0.50 0 1 

Private assignee 1279 0.46 0.50 0 1 
All private assignee 1279 0.42 0.49 0 1 

U.S. assignee  1279 0.79 0.41 0 1 
Patent-Gene Characteristics 

Gene patent 1 1279 0.335 0.47 0 1 
Gene patent 2 to 4 1279 0.523 0.50 0 1 
Gene patent 5 to 7 1279 0.099 0.30 0 1 

Gene patent 8 to 10 1279 0.025 0.16 0 1 
Gene patent 11 to 20 1279 0.017 0.13 0 1 

Gene (max) fragmentation index 1279 0.67 0.30 0.107 1 
OMIM gene  1279 0.25 0.43 0 1 
Cancer gene  1279 0.076 0.26 0 1 
Disease gene 1279 0.27 0.44 0 1 
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TABLE 3 
Correlations Matrix 

  
Independent 
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

1 Patent in force 1.00                           
 

2 Patent window -0.38 1.00                          
 

3 Paper year -0.07 0.09 1.00                          

4 
Number of 
authors -0.01 0.02 0.17 1.00                        

 

5 
Number of 
addresses -0.03 0.01 0.17 0.49 1.00                       

 

6 U.S. address  0.05 0.00 0.04 -0.01 0.10 1.00                       

7 Public address -0.02 -0.01 -0.09 -0.01 0.27 -0.02 1.00                     
 

8 
Private 
address  0.03 0.01 0.15 0.22 -0.08 0.06 -0.57 1.00                    

 

9 Impact factor -0.02 -0.01 -0.10 0.15 0.15 0.10 0.12 -0.05 1.00                   

 

10 

Patent 
application 
year -0.16 0.08 0.88 0.11 0.16 -0.07 -0.03 0.05 -0.05 1.00                  

 

11 
Patent grant 
year -0.30 0.07 0.73 0.11 0.15 -0.07 -0.02 0.04 -0.02 0.83 1.00                 

 

12 
Patent grant 
lag -0.23 -0.01 -0.21 0.01 -0.01 -0.01 0.03 -0.02 0.05 -0.23 0.34 1.00                

 

13 Patent scope -0.01 0.00 -0.02 0.00 -0.01 -0.03 0.01 -0.01 0.01 -0.01 0.00 0.02 1.00               

 

14 
Number of 
claims -0.02 0.00 0.00 0.05 0.03 0.05 0.01 0.03 0.07 -0.01 0.04 0.08 0.17 1.00              

 

15 
Number of 
inventors -0.01 0.00 0.00 0.30 0.12 -0.04 0.03 0.04 0.13 0.01 0.02 0.02 0.04 0.01 1.00             

 

16 
Number of 
assignees -0.01 0.00 -0.01 0.15 0.14 -0.03 0.11 0.01 0.09 0.01 0.02 0.03 0.03 0.08 0.22 1.00            

 

17 
Public 
assignees  0.01 -0.01 -0.12 -0.09 0.18 0.26 0.49 -0.58 0.13 -0.11 -0.09 0.02 -0.05 -0.01 0.02 0.09 1.00           

 

18 
Private 
assignees  -0.01 0.01 0.12 0.15 -0.13 -0.26 -0.45 0.62 -0.10 0.10 0.09 -0.01 0.07 0.05 0.04 0.16 -0.91 1.00          

 

19 U.S. assignee 0.05 0.00 -0.01 -0.05 0.05 0.83 0.01 0.01 0.10 -0.13 -0.12 0.01 -0.04 0.07 -0.05 0.03 0.32 -0.30 1.00         

 

20 Gene patent 1 -0.02 0.01 0.11 -0.07 0.05 -0.01 0.11 -0.10 -0.03 0.15 0.10 -0.08 0.02 -0.08 0.02 0.04 0.05 -0.05 -0.04 1.00        

 

21 
Gene patent  
2 to 4  0.02 -0.01 -0.03 0.05 -0.05 0.02 -0.09 0.08 -0.01 -0.07 -0.05 0.03 -0.02 0.01 -0.01 0.00 -0.04 0.05 0.01 -0.73 1.00       

 

22 
Gene patent  
5 to 7  0.00 -0.01 -0.07 0.02 0.01 -0.01 0.02 -0.05 0.03 -0.06 -0.04 0.04 0.01 0.08 -0.04 -0.04 0.05 -0.06 0.03 -0.24 -0.36 1.00      

 

23 
Gene patent  
8 to 10  0.00 0.00 -0.03 0.03 0.01 -0.04 -0.06 0.05 0.07 -0.03 -0.01 0.03 -0.03 0.01 0.05 0.00 -0.06 0.07 0.00 -0.11 -0.17 -0.06 1.00     

 

24 
Gene patent 
11 to 20  0.00 0.00 -0.06 -0.03 -0.04 0.04 -0.03 0.07 -0.01 -0.06 -0.04 0.03 -0.01 0.02 0.01 -0.04 -0.06 0.05 0.03 -0.10 -0.15 -0.05 -0.02 1.00    

 

25 
Fragmentation 
index 0.01 0.01 0.09 -0.11 -0.03 0.02 0.07 -0.11 -0.03 0.09 0.02 -0.12 -0.01 -0.08 -0.10 -0.26 0.04 -0.12 0.00 0.66 -0.36 -0.27 -0.18 -0.15 1.00   

 

26 OMIM gene  -0.03 0.00 -0.09 0.10 0.13 0.01 0.06 -0.08 0.08 -0.06 0.01 0.11 -0.06 0.05 0.04 0.04 0.03 -0.04 -0.02 -0.07 -0.01 0.07 0.04 0.05 -0.11 1.00   

27 Cancer gene  -0.01 -0.01 -0.06 0.07 0.04 0.02 0.06 -0.04 0.02 -0.06 -0.01 0.08 -0.03 0.10 -0.01 0.09 0.03 -0.02 0.02 -0.06 0.01 0.04 -0.01 0.06 -0.12 0.30 1.00  

28 Disease gene  -0.03 0.00 -0.09 0.10 0.13 0.01 0.07 -0.09 0.08 -0.06 0.01 0.11 -0.06 0.08 0.04 0.06 0.05 -0.04 -0.01 -0.07 0.00 0.06 0.04 0.06 -0.11 0.94 0.47 1.00 
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TABLE 4 
List of Top Ten Most Frequently Appearing Journals 

 
Journal Name  Frequency of 

Appearance 
Percentage 

Gene Papers 
(%) 

Journal Impact 
Factor (2005) 

Journal of Biological Chemistry 
 

202 15.78 5.85 

The Proceedings of the National 
Academy of Sciences USA 

137 10.70 10.23 

Genomics 
 

61 4.77 3.18 

Science 
 

47 3.67 30.93 

Nature 
 

46 3.59 29.27 

Cell 
 

34 2.66 29.43 

Nature Genetics 
 

34 2.66 25.80 

Cancer Research 
 

31 2.42 7.62 

Biochemical & Biophysical Research 
Communications 

28 2.19 3 

Molecular and Cellular Biology  
 

27 2.11 7.09 
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TABLE 5 
Distribution of Genes by Number of Times Patented 

 

Times 
Patented 

Frequency:  
Number of Genes  
(Full Patented Population) 

Frequency: 
Number of Genes  
(Paired Genes Sample) 

1 2,844 1,535 
2 905 611 
3 350 266 
4 139 100 
5 55 46 
6 38 34 
7 17 16 
8 13 12 
9 9 5 
10 4 4 
11 1 1 
12 1 1 
13 2 2 
14 2 2 
20 2 2 

Total 4,382 2,637 
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TABLE 6 
Top 20 Most Patented Genes 

 

Gene Name Gene Function 

 

Disease 
Linked 

(OMIM or 
Cancer) 

Number of 
Patents/ 
Times 

Patented 

 

Year of First 
Patent 

Application 

 

Public, Private or 
Joint First Patent 

% Patents with 
one or more 

private assignee 

BMP7 Bone morphogenetic protein 7  N 20 1991 Private 100 

CDKN2A Cyclin-dependent kinase inhibitor 
2A  

Y 20 1994 Public 40 

BRCA1 Breast cancer 1, early onset Y 14 1995 Public 86 

CA9 Carbonic anhydrase IX N 14 1992 Private 7 

NRG1 Neuregulin 1 Y 13 1993 Joint 85 

SHH Sonic hedgehog homolog  N 13 1994 Public 15 

LEPR Leptin receptor Y 12 1994 Private 100 

RGS16 
Regulator of G-protein signalling 
16 

N 11 1994 Private 45 

CD40LG CD40 ligand  Y 10 1994 Private 100 

IHH Indian hedgehog homolog  Y 10 1994 Public 10 

IL1RN Interleukin 1 receptor antagonist Y 10 1995 Private 100 

VEGFC Vascular endothelial growth 
factor C 

N 10 1995 Private 60 

CACNA2D1 Calcium channel, voltage-
dependent, alpha 2/delta subunit 1 

N 9 1991 Public 89 

IKBKB 
Inhibitor of kappa light 
polypeptide gene enhancer in B-
cells, kinase beta 

N 9 1997 Private 89 

LTF Lactotransferrin N 9 1993 Public 33 

PTGER2 
Prostaglandin E receptor 2 , 
53kDa 

N 9 1994 Private 22 

TERC Telomerase RNA component Y 9 1994 Private 67 

PLA2G7 Phospholipase A2, group VII  Y 9 1995 Private 100 

KLK4 Kallikrein 4  N 9 1996 Private 100 

PIK3R5 Phosphoinositide-3-kinase, 
regulatory subunit 5, p101 

Y 9 1997 Private 100 
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TABLE 7 
Impact of Patent in Forcea, b 

 
  NBRM: DV = FC 

Coefficients reported as incidence rate ratios, IRR 
[7-1] 
Baseline 

[7-2] 
Marginal 
Effects 

[7-3]  
Full  

[7-4]  
Patent 
Scope 
Interaction 

[7-5]  
Patent 
Claims 
Interaction 

[7-6] 
Full with 
Interaction 

Independent Variables  
Patent window   0.94  

(0.05)[0.06] 
0.99  
(0.02)[0.06] 

0.99  
(0.02)[0.02] 

0.99 
(0.02) [1.49]  

0.99 
(0.02) [1.48]

Patent in force   0.83*** 
(0.04)[0.16] 

0.95**  
(0.02)[0.06] 

0.95** 
(0.02)[0.06] 

0.95** 
(0.02) [0.06] 

0.95** 
(0.02) [0.06]

Patent in force x  
(Scope-mean scope) 

      0.99***  
(0.00)[0.00] 

  0.99*** 
(0.00) [0.00] 

Patent in force x  
(# of claims -  
mean # of claims) 

        1.00 
(0.00) [0.00] 

1.00 
(0.00) [0.00] 

Control Variables 
Number of authors 1.03*** 

(0.00)[0.01] 
1.03*** 
(0.00)[0.01] 

  
     

Number of 
addresses  

1.03*** 
(0.01)[0.01] 

1.03*** 
(0.01)[0.01] 

  
     

U.S. address   0.93  
(0.03)[0.05] 

 0.95  
(0.04)[0.05] 

  
     

Public address 0.87*** 
(0.03)[0.05] 

0.87***  
(0.03)[0.05] 

  
     

Impact factor 1.09*** 
(0.00)[0.00] 

1.09*** 
(0.00)[0.00] 

  
     

Paper fixed effects      χ2

110000*** 
χ2 
110000*** 

χ2

110000*** 
χ2 

110000*** 
Paper age fixed 
effects 

χ2 
1242*** 

χ2  
1201*** 

χ2 
2868*** 

χ2 
2860*** 

χ2  
2853***  

χ2 
2862*** 

Citation year fixed 
effects 

χ2  
214***  

χ2  
144*** 

χ2 
520*** 

χ2 
511*** 

χ2 
508***  

χ2  
510*** 

Regression Statistics 
Log-likelihood -41141 -41125 -32134 -32126 -32134 -32125 
Wald chi-square 
(p) 

0.00 0.00 0.00 0.00 0.00 0.00 

Number of 
observations 

12830 12830 12830 12830 12830 12830 

a Robust standard errors in round parentheses. b Adjusted standard errors in square parentheses.20 *p<0.05; **p<0.01; ***p<0.001 

 

                                                 
20 In addition to the robust standard errors in Tables 7 and 8, we also report in square parentheses the adjusted 
standard errors using the aggregation techniques discussed in Bertrand, Duflo and Mullainathan (2004: 267) to 
correct for the long post-patent time on a large number of papers using differences-in-differences estimates.  
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TABLE 8 
Patent Assignees, Thicket, Fragmentation and Useful Genesa, b 

  NBRM: DV = FC  
Coefficients reported as incidence rate ratios, IRR 
[8-1]  
Public 
Assignee 
vs. No 
Public 
Assignee 

[8-2] 
Private 
Assignee 
vs. No 
Private 
Assignee 

[8-3]  
All Public 
Assignee 
vs. All 
Private 
Assignee 

[8-4]  
Patent 
Thicket 

[8-5] 
Patent-
Gene 
Fragment
-ation 
Index 

[8-6]  
OMIM 
Gene vs.  
No 
OMIM 
Gene 

[8-7] 
Cancer 
Gene vs.  
No 
Cancer 
Gene 

[8-8] 
Disease 
Gene vs. 
No 
Disease 
Gene  

Independent Variables 
Patent window 0.99 

(0.02)[0.06] 
0.99  
(0.02)[1.48] 

1.00 
(0.02)[0.69] 

0.99  
(0.02)[1.48] 

0.99  
(0.02)[1.47] 

0.99  
(0.02)[0.06] 

0.99  
(0.02)[1.47] 

0.99 
(0.02)[1.49] 

Patent in force x  
public assignee 

0.97  
(0.02)[0.06] 

             

Patent in force x  
no public assignee 

0.92*** 
(0.02)[0.06] 

             

Patent in force x  
private assignee 

  0.91*** 
(0.02)[0.06] 

           

Patent in force x  
no private assignee 

  0.98  
(0.02)[0.06] 

           

Patent in force x  
all public assignee 

  1.00 
(0.02)[0.06] 

     

Patent in force x  
all private assignee 

  0.94** 
(0.02)[0.06] 

     

Patent in force x  
gene patent 1  

     0.93**  
(0.02)[0.06]   

        

Patent in force x  
gene patent 2 to 4 

     0.97  
(0.02)[0.06] 

        

Patent in force x  
gene patent 5 to 7 

   0.91** 
(0.03)[0.06] 

    

Patent in force x  
gene patent 8 to 10 

   0.97 
(0.05)[0.06] 

    

Patent in force x  
gene patent 11 to 20 

   1.13 
(0.10)[0.06] 

 
 

  

Patent in force        0.95* 
(0.02)[0.06]   

    

Patent in force x 
(mean frag_index - 
frag_index) 

       0.93* 
(0.03)[0.04] 

      

Patent in force x  
OMIM gene 

         0.92*** 
(0.02)[0.06] 

    

Patent in force x  
no OMIM gene 

         0.97  
(0.02)[0.06] 

    

Patent in force x  
cancer gene 

           0.89** 
(0.03)[0.06]  

  

Patent in force x  
no cancer gene 

           0.96* 
(0.02)[0.06]  

  

Patent in force x  
disease gene 

             0.94** 
(0.02)[0.06] 

Patent in force x  
no disease gene 

             0.96* 

(0.02)[0.06]  
Control Variables 
Paper fixed effects  χ2110000*** χ2 110000*** χ2 110000*** χ2 110000*** χ2 110000*** χ2 110000*** χ2 110000*** χ2 110000*** 

Paper age fixed effects χ2 2867*** χ2 2858*** χ2 2816*** χ2  2847*** χ2 2862*** χ2 3030*** χ2 2877*** χ2 3028***  
Citation year fixed effects χ2 519*** χ2 508*** χ2 524*** χ2 516*** χ2 517*** χ2 685*** χ2 521*** χ2 681***  
Regression Statistics 
Log-likelihood -32131 -32128 -32132 -32128 -32132 -32132 -32131 -32133 
Wald chi-square (p)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Number of  observations 12830 12830 12830 12830 12830 12830 12830 12830 
a Robust standard errors in round parentheses. b Adjusted standard errors in square parentheses. *p<0.05; **p<0.01; ***p<0.001 
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FIGURE 1 
Timeline for a Typical Patent-Paper Pair 

 
 

 
 
 
 

FIGURE 2 
Distribution of Granted Gene Patents by Application Year  

(full sample of 4273 gene patents) 
 

 

 
 

Patent Grant (~ 3 to 4 years after patent 
application, known as patent grant lag) 

Number of Years 

Patent Enforcement 
(Typically follows after 
patent grant) 

Patent Application  
(Before paper publication or 
~ 1 year or less after paper 
publication) 

Paper Publication (~ 3 to 6 
months after paper submission) 


